Continuity of the maps f↦∪x∈Iω(x, f) and f↦{ω(x, f): x∈I}

نویسنده

  • T. H. Steele
چکیده

We study the behavior of two maps in an effort to better understand the stability of ωlimit sets ω(x, f ) as we perturb either x or f , or both. The first map is the set-valued function Λ taking f in C(I ,I) to its collection of ω-limit points Λ( f ) = ⋃x∈I ω(x, f ), and the second is the map Ω taking f in C(I ,I) to its collection of ω-limit sets Ω( f )= {ω(x, f ) : x ∈ I}.We characterize those functions f in C(I ,I) at which each of our maps Λ and Ω is continuous, and then go on to show that both Λ and Ω are continuous on a residual subset of C(I ,I). We then investigate the relationship between the continuity of Λ and Ω at some function f in C(I ,I) with the chaotic nature of that function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-power centralizing and $k$-power skew-centralizing maps on‎ ‎triangular rings

‎Let $mathcal A$ and $mathcal B$ be unital rings‎, ‎and $mathcal M$‎ ‎be an $(mathcal A‎, ‎mathcal B)$-bimodule‎, ‎which is faithful as a‎ ‎left $mathcal A$-module and also as a right $mathcal B$-module‎. ‎Let ${mathcal U}=mbox{rm Tri}(mathcal A‎, ‎mathcal M‎, ‎mathcal‎ ‎B)$ be the triangular ring and ${mathcal Z}({mathcal U})$ its‎ ‎center‎. ‎Assume that $f:{mathcal U}rightarrow{mathcal U}$ is...

متن کامل

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

Banach module valued separating maps and automatic continuity

For two algebras $A$ and $B$, a linear map $T:A longrightarrow B$ is called separating, if $xcdot y=0$ implies $Txcdot Ty=0$ for all $x,yin A$. The general form and the automatic continuity of separating maps between various Banach algebras have been studied extensively. In this paper, we first extend the notion of separating map for module case and then we give a description of a linear se...

متن کامل

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006